- . TECHNICAL MEMORANDUMS
; NATTONAL ADVISORY COMMITTER FOR AERONAUTICS

¥o. 902

DESIG&_OF CENTRIFUGAL IMPELLER BLADES

By A. Betz and I. Fligge~Lotz .

Ingenieur-Archiv, vol. 9, December 1938

\  Tobereturned ts
' the files oy the Tangiey
Memorial Aervneatiticn
- Laboruteiy.

Washﬁnét6n 
July 1939

A




llﬂlillﬂlﬂﬂ\Hll\"lmI!lIHIOHll|\\||ﬂll|\"|l|ll\ll\|

1176 0 a

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

<TEcHNICAL_MEMQRANDUM’NO; 902

DESIGN OF CENTRIFUGAL IMPELLER BLADES*

By A. Betz and I. Flligge-Lotz

I. PUNDAMENTAL PRINGCIPLES

1. Preliminary.Remark

In the older, simple centrifugal impeller theory, it
is assumed that the flow not only follows the shape of the
blades over the blade surface, but that it approximately
maintains the same character between the blades. This as-
sumption 1s Justifiadle to some extent if the distance be-
tween the blades is small compared with the radius of cur~
vature of the absolute streamlines, as is the case for a
relatively slowly rotating impeller. The more the rota- .
tional speed was raised, however, and the blade area cor-
respondingly reduced the more the inadequacy of these
simple assumptions appeared. Particularly at the blade
tips, the mean direction of the streamlines no longer
agreed with the directions of the inlet and exit tangents
of the blades and these angles had to be corrected by em~
pirical values. PFor very high-speed impellers (Kaplan
turbines) the simple ideas underlying this method of come-
putation practically lost their meaning entirely. It was
then that these blades began to be designed by the prow-
cedure developed in aeronautics for isolated wings, with
the effect of the neighboring wings taken into account
as a disturbance. This method of computation becomes
simpler the greater the distance between the blades, with
the resulting small disturbance by the neighboring blades,

An important aid for this computation procedure is the

conformal transformation (see reference 1) of a blade cas-
cade. Even by this conformal transformation method, how-
ever, the computational difficulties increase very greatly
if the blades are too large or if their distance apart is
too small. A characteristic that indicates whether a given
system 1s suited to the method of conformal transformation
is that the blades do not overlap (i.e., that it be pos-
sible to see through between them when viewed along the

*"Berechnung der Schaufeln von Kreiselrfdern." Ingenieur-
Archiv, vol. 9, December 1938, pp. 486-501.
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axial or radial direction for axial and radial impellers,
respectively). A further disadvantage of the conformal
transformation method is that it is restricted to two-
dimensional flows so that it cannot be applied, for exam~
ple, to impellers of nonparallel ca31ng walls such as that
shown in figure 1l.

The procedure to be described in what follows 1is in-
tended to fill the gaps in the two methods mentioned above.
We restrict ourselves essentially to radial impellers with
cylindrical blades since, as Prasil has shown (reference 2),
the flow about an arbitrarily curved surface of revolution
(for example, in a Francis wheel) may be reduced to this
normal form we have chosen by a relatively simple conformal
transformation. This method starts from the simple Hypoth~-
eses of the older centrifugal impeller theory by first as-
suming an impeller with an infinite number of blades. How
the flow is modified in passing to a finite number of

‘blades is then investigated., The blade shape must be ad-

Justed to this changed flow. For the computation of the
flow for a finite number of blades, the appréximation
method for isolated wings as developed dy Munk, Prandtl
and Biranbaum, or Glauert {refcrcnces 3, 4, and 5) is found
suitable. The essgential idea of this method is t0 replace
the wing by a vortex shecet and compute the flow as the

‘“field of these vorticess, The shape of the blades is then

obtained from the condition that the flow must be along

the surface of the blade. If the blade shape thus obtained
deviates strongly from that first assumed (on the basis of
the computation for an infinite number of blades) the com-
putation is to be repeatecd with the modified blade shape,
since the vortex sheets whose field is given by the flow
should have the same form as the blades. Slight deviations,
however, are without appreciable effect,as is known from
the corresponding computations for isolated wings. If the
blades are not of a negligible thickness, the latter can

be taken into account in the familiar manner by the intro-
duction of sources and sinks. :

2., Representation of the Field of Flow
for Parallel Casing Walls

It might be possible to proceed by computing the

field of a vortex which replaces a blade element bgtween

r and r + dr, -adding the disturbance velocities of n,
such vortices corresponding to the n ©blades and finally
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integrating over the blade length., This computation would
= Yecome rather- cumbersome, . however, since for each point:

the vortices corresponding to the blade elements at radius

r would in general give rise to different disturbance -
velocities. Such computation would become particularly
tedious when the flow'considered is not two-dimensional
as“in the case of a wheel with nonparallel walls like that
of figure 1, The computation simplifies considerably if
all the point singularities (vortices, sources) are repre-
sented as vortices of sine wave periodic fluctuation con~
tinuously distributed over the cirecle circumference.* Such
periodic vortex sheets glve rise to fields with the same
periodic fluctuation about the circumference of a circle.
In figure 2, for example, is shown a periodic vortex dis-
tribution at radius R and the corresponding distribution
of the radial and tangential components of the velocity at
radius r. For characterizing the disturbance only the
maximum value for each radius need be determined, the de-
rendence on the angle o Dbeing direcctly given by the
periodic distribution.

If the velocity difference of the front and back
sides of the blades at radius R is equal to Av, the
circulation about a blade element of lengbh ds 1is equal
to dI'= Av ds. If the element lies between the radii R
and R + dR, then dR = ds cos § where 8 is the angle
between the blade tangent and the radius (fig. 3). For n
blades the n concentrated vortices of circulation 47T
distributed over the circle circumference may be repre-
sented as continuously distributed vortices of intensity
I'* per unit length by the Fourier series

ndl r ® '
re = —————ftl + 2 Z cos An (p=-296) ] (1)
- 2 Rm = 4

where © = f(R) gives the blade shape, The objection
might be raised against this representation that this
series no longer converges and the point vortices can be
'represented only approximately by breaking off the series
after a few terms. This obJjection is without Justifica-
‘tion, however, since in the application of this series to
the computation of the disturbance - velocities the series

that arise are always convergent. (see equations (7), (8).)

*For the idea of replacing the discontinuous blades by
Fourier series of continuous periodic functions, we are
indedbted to an oral remark of Mr. J. Ackeret.
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If the Fourier series (1) is broken off after the
first term, it would mean that the concentrated wvortices
on the(yingéﬁgre uniformly distributed over the circle
circumferenct, i.e., that instead of a finite number of
blades we assume an infinite number. Therefore, if only
the first term is taken into account, this would corre-
spond entirely to the above-mentioned computation proced-
ure of the older, simple centrifugal impeller theory for
which the streamline pattern between the blades is assumed
the same throughout. It is the additional terms of the
Pourier series that bring out the more accuratc conditions
at the various positions between the blades. The fact
that in many cases this old, simple theory, that is, the
single first PFourier term, nevertheless yields useful re-
sults, leads us to expect that only a very few terms of
the Fourier series are sufficient to represent the flow
adequately. The better the agreement of the simple theory
the fewer the terms that will be needed. A larger number
of terms therefore will ve mainly required only for the
neighborhood of thec blade tips. In the region of the
blade tips, however, the necighboring blades play a rela-
tively small part, so that the conditions at this position
may be computed on the basis of the knowledge of those
about the single blade and the effect of the neighboring
wings taken into account as z correction.

3., Yonparallel Bounding Walls

The method of representation of the discontinuous
vortices by continuous functions shows up to particular
advantage for nonparallel bounding walls (fig. 1). On
account of the circular symmetry of the bounding walls
the disturbance field alsc in this case shows the same
periodicity characteristics. It is necessary only to com-
pute the maximum disturbance velocities as a function of
r/R and n Number of periods) for each shape of bounding
surface. This computation may proceed by first determin-
ing the relations for the two-dimensional flow., The eof~-
fect of the radially varying distance between the walls is
to produce an additional increasce in the radial velocity
components vy, as a result of the narrowing. The tangen-
tial componenits of the velocities Vy are not dirceectly
affected by the walls since the distance does not vary in
the tangential direction. They are, however, indirectly
changed, duc to the change in radial veloecities by the con-
dition of freedom from vortices. If h 1is the distance
between the walls at radius r and dh/dr, its rate of
increase with the radius (the inclination of the walls)
the radial increase in the radial velovity v, at this

A ' h |
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position is* : . ‘

, This velocity change 1is superposed on’ the velocity fleld

of the two-~dimensional flow in which generally ‘there is
also a velocity drop avr /ar. These changes in velocity

due to the inclination of the bounding walls may also be
brought out by the introduction of sources and sinks in
the flow while maintaining the flow two~dimensional. The
strength of the required additlonal sources and sinks per
unit volume is :

AVr Vy dh . a1l
B = 21 _rdh -y ___3§_E S (3)
ar h ar dr

The significance of these sources and sinks can also
be made clear by the following consideration: The two-di=-
mensional flow does not satisfy the boundary condition at
the walls. The fluid would pass through the bounding walls.
(fig. 4) with a velocity componcnt normal to the wall vy =

vy sin § = —vru%E cos 8. Through a surface element d4F of
" ;

the bounding wall therefore a quantity Q = v, dF = =

-V %E dF cos & ©passes through, where 4dF cos 6§ is the'pro-

Jection of the surface element in the direction of the axis.
If we now apply to this surface element uniformly distrib-

uted sources of the total strength E = Q, the normal com~
ponent v, 1is exactly balanced. There arises only the dif-

ficulty that the effect of the sources and sinks is not uni-
formly distributed over the height h 1f the strength of
the sources, or vy, 1in a region which is not large com-
pared to h, +varies appreciably. These sources may not
therefore be concentrated at the bounding walls but must: be
uniformly distributed over the helght h. There is then
obtained per unit volume the source strength given by equas
tion (3). -

*We assume here that the distance between the walls is
small compared with their radius of curvature and that the
inclination of the walls is small so that the flow between
them may be considered constant on every line parallel to
the axis. If this condition is not sufficiently satisfied
(for example, in the neighborhood of the axial inlet (fig.
1)), then the flow may be broken up into layers by the
method of Prédsil and each of the layers separately treated.
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Since the initial disturbance lying on a circle r,
(vortex) of definite frequency gives at every other radius
a periodic disturbance velocity v, of the same period
the sources and sinks required for the balancing of the
nonparallel wall will be distributed according to the same
period. The added sources and sinks will change the ve-
locity distribution, but since they are distributed accord-
ing to the same period as the initial disturbance, only the
amplitude of the disturbance velocities, but not their
position and period, will be changed, as already remarked.

By the above considerations we are in a position to
compute the flow for an arbitrary shape of the bounding
walls. Computation of practical examples gives, however,
the happy result that the shape of the bounding walls in
almost all practical cases that arise shows up only the
first term of the Fourier series, that is, in the mean ra-
dial discharge velocity, whereas, on the higher terms, it
has only a negligible effect. Since, however, the mean
radial discharge velocity may be obtained in a quite ele-
mentary manner from the arca of discharge 2 rmh, the
Fourier representation of the source distribution becomes
superfluous for practical computation. We must, neverthe-
less, carry out this relatively cumbersome computation in
order to show that in the majority of cases it 1is unneces-
sary.

II. THE FIELD FUNCTIONS FOR THE TWO-DIMENSIONAL FLOW

Following the method outlined in the above section,
we consider the blades to be replaced by vortices and com-
pute the velocities induced by these vortices, the vor-
tices dI' Dbeing periodically distributed according to
equation (1) on a circle of radius R at the points of
intersection with the blades. We must now compute the
velocity field due to such a harmonic vortex distribution.

Let the vortices lie on the circle of radius R,
their maximum intensity be Wu, the period of distridbu-
tion 2 m/m, and the maximum values be displaced from the
zero position by (X + 2rn/m) (fig. 5). The circulation
distribution over the circumference is accordingly

Y = p cos m(p - %) (4)

where m= 1 is an integer. At an arbitrary point (r, o),
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a tangential velocity Vo, and a radial velocity vy are

produced "the veloecities having the -same period as the . .
vortex distribution. At the cirecle of radius R the tan-
gential components must show a discontinuity, correspond-
ing to the vortex distridbution, of magnitude

A vy = p cos mlp - X)

The radial component ., from considerations of continuity,
can only vary continuously. At infinity and at the origin
both Vo and vy must tend to zero. From these boundary

conditions and the requirement of a flow free from rotation
and sources, there are obtained the velocity components

~m-1
vm=%<.§) cos m(gp~ X) (r > R) |
5
. (8)
vtp= -%(—;—) cos m{gp - X) (r <R)
and
Vy = = %<%>-m-lsin m(ep - X) (r> R) o
vy = -%(%) sin m(ow - X) (r < R)

Having determined the velocity field of a harmonic
vortex distribution, we may now give the velocity field
due to the discontinuous distribution (1):

n ar @ \-)‘n"l
Avcp(r»cp) -'-‘;—‘ié—-i AR[%—+)\Z .;.) cos }\n(cp--e)](r>3)
, T =1 .
aP An-1
A wplre) = - 2% Az T _1:) cos An(ep-6) (r< R)
c? P En'R 3R A=1 ‘R e L

The part independent of the angle 1s effective only in the
external region. For the radial velocity, there is further
obtained
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i n al" o r - An=1 '
A vp(r,p) = - 2 2 AR X (-) © sinAn(p - 8) (r>R)
21R aR A=1 R
n al“' © r N kn-’l .
A Vr(r,@) = - 5;5 SE Ainl —') sin An(op - 6) (r <R)

Ve shall denote the inner blade radius by Ty and the

outer by r, (fig. 3). The velocities produced by the

totality of vortices on the circles between the roots and
tips of the blades are then given by the relations¥*

r N\
= e e + -~
Ve % 2r | R < ) cos Anle
rs > (7)
Ta
n
- — ok X -8
e faR .z 1() cos An(w ) 4 R J
r
r
o) - An
rvr-:-g;f—g—rg_l_(%) sin An(op - ©) 4 R h
rj
7 (8)
r AR
5 <_r-> sin an(op~-9) d R
=1 R

Ty
n 3
’Eﬁfﬁh
r

*In the later computations the velocities always occur mul-
tiplied by r.

The series in equations (7) and (8) may be summed. F.
Staufer (Wasserkraft u. Wasserwirtsch. 31 (1936) p. 212)
has also replaced the blades by vortex distridbutions and
worked with the finite expressions, This representation
permits, however, of no generalization to wheels with non-
parallel bounding walls,

|
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III. THE COMPUTATION OF IMPELLERS WITH PARALLEL BOUNDING WALLS

WITH THE AID OF THE PERIODIC FIELD FUNCTIONS

The computation procedure is now the following. The
vortex distribution 3I'/3R 1is prescribed and the corre-
sponding blade shape 1s to be determined., There is first
computed from the previous simple theory the blade shape
which would correspond to a complete discharge of the water
or air through the blades, that is, to an infinite number
of bladese The blades then affect only the tangential ve-
locities '

(this is the first term of equation (7)), i.e., we have

= 2.7
vm 2mr (r)

where I' is the circulation of each blade and nI' there-
fore that about all of the n Dblades. We assume that there
are no guide vanes, so that the fluid enters without rota-
tion. In the case of an inflow with rotation of circula-
tion I'y the component Ve would become larger by

PD/Zﬂr. Let the mean radial velocity unaffected by the
blades be crm, then the relative path is determined by
2 _I'(r) -wr

tan § = 20X (9)
Cr

m

(fig. 3) where 9§ denotes the angle of the relative flow
path with the radius (for backward curved blades 4§ is
always negative (fig. 3)); w is the angular velocity of
the impeller. Since it is convenient to compute with non-
dimensional magnitudes, we introduce :

Pe(r) = ——zizl——, Vr e

= v* =
£}
T
anau)ra w ry ® w I'a
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Zquation (9) then becomes

. 2
r
r - (&)
r
tan § = a (9a)

et ()
" m ra

from which the mean flow path may readily be computed and
found to be

tan 93

so that ‘ r

o (r) = ol(ry)

1]
o+
)
o
(23
o
3

For an infinite number of blades the mean flow path and
blade shape agrec so that the function 6 (r) (fig. 3),
which gives the blade shapec, is also determined.

With the aid of equations (7) and (8) it is now pos=-
sible to compute the additional velocities for a finite
number of bladzs. Since,in the cases that practically
arise term by term, integration is possible, we compute by
the modified formulas

r

J

* D
ﬁ;v% = nF*(r)+nx§1 ./pégé-‘%.>—kncos An(p = 8)Y d R
ry 3
r (7a)
o raaP* o |
-n %51 Eﬁ;-<g ) cos An{ow=6) 4 R
r
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o p¥ i W
—Lv*:_nz /a ( > Sin M(CP'- e) dR
r, T R
. ' , > . (82a)
r, ,
. o) * . .
T BI‘ (1) sin)\n(q)- 8) a R
A=1 : -
and.
T
o = — v¥ - *
r. % edd T T, ‘o T (x)
X oy = L vx
r, Vr add r, Ve

Assuming that dl'*/3r for ry and ry,, that is, blade

root and tip, tends toward zero, the convergence is
assured and rapid. On the proper choice of 3 I*/3r, we
shall have something to say later,

After vé agq ond v; add have been computed, the
new blade shape is determined

r
0x(x) = 6,(ry) ;f—“—‘-‘l‘;h ar
ri
with

r
n-“‘*z«;"mada (= >

tan 9, = (10)

r
o (?..) + v;—-»-(_u.rrf)
m & a

This deviates from the old shape, particularly at the root

("
¥ H
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and tip. The velocity field is therefore computed anew
by assuming the concentrated vortices on the new blade
shape, i.c., in equations (7a) and (8a) replacing 6 by

6,. This method is continued until 6, agrees with
en—l- Practically 53 will already deviate little from
.

)

With regard to the numerical evaluation, it is to be
noted that, on account of the high exponents An, the in-
tegrands occurring in (7) or (8) have appreciable values
only about the point considered (r,m), so that in the
greatest portion of the blade region only few Fourier terms
will be required. Only at the blade tips where the vortex
distribution drops very rapidly is it necessary to take a
relatively large number of terms of the series (7) and (8)
in order to obtain accurate values of the additional veloc-
ities at the blade root and tipe This difficulty may.be
evaded in the following manner: The integrals are evalu~-
ated, for example, if we consider the blade tip only, up

to a value r, <r, where 1r; is so chosen that the

blade between r, and r, 1is as nearly as possible re-
placeable by a straight line. For the vortex distribution
between r;, and rg, there is determined the center of

gravity, which we assume is at 1z, The tips of all blades ©
except the one under consideration are now replaced by a
single vortex and the effect of the remaining blades is
thus computcd. At the bladce itself the circulation distri-
bution is replaced by the function cwrg - r as may cer-
tainly be donc with good approximation and thus the addi-
tional veclocities are computed. The constant ¢ must Dbe
so determined that a good continuity is obtained with the
circulation distridbution in the region r < r,. This pro-
cedurec has also been applied to the example considered be-
low for shortening the computation,

1V. IMPELLERS WITH NONWPARALLEL BOUNDING WALLS

1. The Impeller Width Decreases According to a Power Law

In part I, 3 it was explained that for the case of
nonparallsl walls therc are additional sources whose
strength is given by the rclation

vy dh
E= - = (5)
h dr



N.A.C.A. Technical Memodérandum XNo., 902 13

~In the above equation vy 1is composed of a portion _vrl

4"correspondingmtorthe-diScharge:flow;ﬂa porﬁionwwvrg_ cor-
responding to the vortex flow, and a portion Vi due

3
to the sources themselves. The determination of the
sources leads, for known v, and vy, 4, to the solution

of an integral equation. Fo% the case that the width var-~
ies by a power law, that is, where the width is given by

H = 0 r°8 (il)

the computation of the flow may be more simply carried
out. We may avoid the solution of the integral equation
if we proceecd as follows,

We seek to determine a periodic velocity field which
everywhere has sources, that is, whose divergence is dif-
ferent from zero, and which, in addition, possesses on a
circle of prescribed radius a discontinuity in the tangen-
tial velocity corresponding to a given periodic vortex
distribution. By superposition then may be determined the
velocity field which has vortex distribution of different
periods on many circles, as corresponds to the circulation
distribution of the impeller under consideration,

Let the unknown radial and tangential velocities have
the period m and amplitudes Vre and WDO

Ve = Ve sin mo Ve = v(:po cos meo (12)

(Sece equations (5) and (6).) For the ficld divergence
which is then also a periodic function, there is obtained

va) X
div v = By sin mqo:-%Egg(rvro sin mp)4—§%(m3°cos mCQ] (13)

Carrying out the differentiation and dividing by sin mep
we obtain for the amplitude of the source

m . 11 3 ' : : | A
By = ;4:5; (r vro) -m vmo ] . (14)

Since the required flow is free from vortiéés, except on -
the single circle of radius R that has a prescribed vor-
tex distridbution, we have for r< R and r > R '
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- 1 o d
rot v = 0 = = — (r v cos mP) = —m (V sin m
- r Or ( ®o ) rd ( To ®)

or
3 Vi
0
v + I e—— - m v = 0 (15)
o or To

From equations (14) and (15) there is obtained by elimina-
tion of the tangential velocity and its derivatives

B v ov 3%y
o En = (1 - n®) o 4 3 o + T ——0 (16)
dr r or or?

2 En +r

In order that the sources correspond to the prescribed de-
crease in the width of the impeller, they must satisfy the
condition (see equation (3))

h dr

For the case where the width h decreases to a negative
power h = C r~8, +there is obtained

(17)

We have then from equation (16)*

AV Ve 3 Vg 8 vy
o__ELvro,z(l - m?) 0,43 °, 0
or r? T 3 r dr=?

g < &
BV +r | =4
r'To r\
or after rearrangement

ravr°+avr° (B—g)+vr°[(l-m2)—g3=0 (18)

dr? 3 r r

*It may be readily seen that every other function h’
makes the solution of the differential equation difficult.
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This differential equation is solvable by an exponential
substitution R T - .

where o and £ are constants still to be determined.
For the constant B, there is obtained '

g / 2, &°
- - } 2
(} 2) 3 m- + T

i.e., there is a solution for the amplltude of the radlal

velocity
f 2
-] - = )+ ma + _g..._
2 4 B1
(Vro)i = Qa3 r =0y T (19)

which vanishes for r — 0, and a solution

R WERE

(veda = 0T = o, rPa (20)

which is zero for r —> o Both of these solutions must
then be so assembled that the corresponding velocity field
has exactly the prescribed discontinuity in the tangential
velocity field on the circle with radius Re. From equation
(14), there is obtained for the amplitude of the tangential
velocity field

3 r m

and, further, making use of equation (17)

o
v, = vp (1 = + T —

For the difference of the amplitudes of the tangential
velocities on the circle with radius R, we¢ obtain after
substituting the solutions (19) and (20)
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- 7 = (C(,a Ba RBa - a3 Bi RBl)

v
Po a Do i

=R

Since at the position of the discontinuity of the tangen-
tial velocity, we have on account of the continuity of
the normal velocity

ag RP2 = o; RPI

"there is obtained
/. & gV /m3s B2
2,8 —(l—-—)— m- -+
_ Ba—Bs. 2 ymoty 2 4

Pa-

®oa %i mn m
The difference v - v represents the amplitude of
Do a Do i
the vortex distribution
2 n 3T
v v, e (Zan)
P a % i 2nrR  ‘OR

where n)\ = m. There is then obtained the constant

g / 2.2 &2
2n<al-. nx R+<l—-§>+ n A +-4,—

a, = - — (—AR
2R N OR /4n2%2+ 22
2
. . +@ -%>4nxd/1+ 4g22
n
2R \ R .

p .
l+_.._g__..._
v 4 n?p? J

e (

— [ 1 [0 W R TR A SN I e ]
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- For the velocities in the radial direction, we obtain

17

| . (1_§> _ m S
. n arl' 1 (;)
V. = A - : sin Anc
Ta 2nR aRuR> P : o @
/1+—-§—— ’ .
4112?\2 >(22)
2
() - e
vy - (QEAR _.—lu___(:£> sin Anem
1 2nr \ar gz OB
+
4n=2)°®
-
and for the tangential direction
N
2
- £ _ [n2a2y E- Ba
v = = B ézAR) L2 4 <§> cos Anm
Q")a 2R aR s
na 1 + g
© 4n2)2
> (23)
£ 2.2, g° 8.
- =+ /A" + = i
Vep = = 2 EEA]_?_) 2 4 (-1:> cos Anwo
“i 2R S8R 22 R
n A 1 +
4n2A2 J

There was thus obtained,

in place of (7)

impeller width decreasing according to a

finite number of blades
T

£ 2.2, 82
n L@ =t fnTNTA—
TV m— §£1+2 2 4 <.J.'_>
21 AR| A=1 o2 R
Ty n® NP+
r o
a ! g g?..
- 242,87
n o, e TRVIENTL oy
217 BRA=1 2 (R
T L RN

Bat+l

cos

Bi+1

N’

cos

and (8), for an

power law,

- ™

Mm(p-8)[dR

am(p-8)|aR

for a

» (24)
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and the additional radial velocity

B+l
r vy = - 2 _?_P_ 5 1 (E.) sin An(w-6) 4 R
2T . AR 2= ) R

. =1 -
Tj 1+ 85
4n2x3

Bi+l

‘sin.Xn(¢ - 08)ar

d/q oR A 1
v 4 nexe (25)

These relations (24) and (25) for hyperbolically decreasing
impeller width are employed in place of (7) and (8). Other-
wise, the computation proceeds in the same manner. The

mean radial velocity Cr for decreasing width is naturally

different from that for a constant width.

It is to be noted that ~
2
%—-(l--%- a*A% o+
> (26)
_ (1_._% + /a2 4 B2
Bi—_ 5 n A )
o
and, hence, for large n}A
\
Ba + 1 = = DA+ 2 ey
. > (27)
Bi+1=+n>\ +—2—+o--
7

From this approximation, it follows that the effect of the
decreasing width on the harmonics for impellers of blade

number > 2 is in general very small, so that the variable
width need be taken into account only for mean radial dise-
charge velocities cr = Q/2rwh, but otherwise the compu-

tation may proceed as though the walls were parallel,
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2. Arbitrary Decrease in Impeller Width

For an arbitrary decrease in the impeller ‘width "~ h(r)
there are obtained in place of (18) differential equations
that no longer have a simple solution. We shall therefore
determine indirectly the sources reguired for satisfying
the boundary conditions. The source strength E 1is given
by the equation ' o '

Ve dh 1 dh | ' |
E:—-—.———:-.—.—.—— v 4+ v + v . ’ 28
h dr h dr ¢ T rz. rs) : (28)

where Vr, corresponds to the pure discharge velocity:

v = C,h o v is induced by the vortex flow and 1s ob-
r, Th T,

tained from equation (8) so that it is a periodic function
in o and the portion vy, is the radial velocity due to

the sources themselves. To solve equation (28) there is
assumed for the unknown sources a periodic expression of
the form

27 A=1

with the undetermined coefficients ahn(r) and bhn(r)°

The radial velocity induced by these sources 1s similarly
a periocdic function in ¢

E = —E—-Fo(r)+2 E ayy (r) cos Anp + by,(r) sin An(p] (29)

r
vr3=§%? J/n (R)+ E F%n(R) < ) cos Anm*bxn(R)<R>
° © sin An qu. d R
c.o o r An r An _
- ‘/:\.E.l[axn(R) (ﬁ ) cos Ancp+’b}\n(R)_ <_ﬁ> sin}xnm]dR (50)

r

Substituting the values vrl. Yy B, aﬂd vr3 in equation

al
(28) the latter breaks up into an infinite number of equa-
tlons corresponding to the number of harmonics and there is
obtained an infinite set of independent integral eguations
for the unknown coefficient functions a%n(r) and bxn(r).

These integral equations may be solved by iteration. We
shall not, for the reasons given above, go into the solution
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of these integral egquations, since it is only very rarely
that it becomes necessary to solve them.

V. COMPUTATION OF AN IMPELLER

In order to illustrate the method of computations of
centrifugal impellers, taking into account the finite num-
ber of blades and constant or decreasing impeller width,
we shall now consider an example. Let it be required to
design a centrifugal impeller (blower) which imparts to a
discharge of 600 m3 per minute a pressure rise of 200 mm
water (air conditioner for mine operation), that is,

Q = 600 m*/min = 10 m®/s }

. (31)
P,ot = 200 mm WS = 200 kg/m
Let there be‘available a motor drive with 720 r.p.m., CcOr-
2mn -
responding to an angular velocity w =55 = 75.5 s” %, The
suction velocity may be assumed as cg = 25 m/s. If the

diameter of the impeller at the inlet is made equal to the

diameter of the suction pipe, there is obtained from
r? mcg = Q for the inlet radius rj = 0.36 m. If it is
assumed in addition that the suction and inlet velocity are

approximately the same (crmi = ¢cg = 25 m/s) there is ob-

tained for the width of the impeller at the inlet from the
relation crmi X 2 rym™hy = Q the value h; = 0.18 m,

The outer diameter of the impeller is chosen as 2 r, =

1.4 m, that is, about equal to twice the wvalue of the in-
ner diameter. For constant impeller width the mean radial
exit veloclity then becomes '

cyp = 12.84 m/s(c} = c
n

r, = 0.243
n /u) a )

T
a Mg

Y]

The desired

inzreasc in pressure determines the required
total circuls :

slshakcYs
tion®

*In relation (32) we have assumed that the efficiency n = 1
so that friction losses are not taken into account, If an
efficiency of 75 percent is assumed, the impeller would de-
liver a pressure head of 150 mm of water.
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AP =puw = S (32)
S~ I | | ‘ o

(p _ 1 ke sec?
8 m* .
for the nondimensional total circulation

).‘ From A p = 200 kg/m®, there follows

ni* = » T = .Ap

: 2
2 mr, w ry p (&.ra

= 0,572 (33)

With these values, there is obtained from (9) for the case
of an infinite nunber of blades, for the blade tangent at
the inlet

= wr. - Wrs
tan 33 = L = e = =1,1 (34)

Crpji Q
gri'ﬂ'hi

that is, the angle §3 = = 47.5°, and, from (9) and (9a),
for the blade tangent at the exit for constant wheel width

ol s
a * o]
tan §_ = 2T Ta = " P* = - 1,8 (35)
a Cxw Cp
ma,. ma

i.e.,
'aa = -60050

The absolute inlet velocity cri amounts to 25 m/s (see

above) and the relative velocity
Cry . Vry

v: = = 37 m/s (36)
reli " cos 8y cos Iy /

The relative exit velocity is obtained as

v _ep .
Vrel = Y - 26 mf/s o - (87)
2 cos ﬁa . . .

and the absolute*

*It should be noted that for backward curved blades 4§ is
negative. ’
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- 2 e 2 .
exit ‘v/vrela +w® r; + R Vypgy w Ty sind, (38)

or*

r 2 A '
Coxit = J/( 2 ) + vg = 33 m/s (39)

2 T r,

We shall design the wheel with 10 blades. In order
to determine the blade shape, we must first prescribe the
variation of the circulation along each blade. Since we
are considering impact-free entry, the circulation at the
root and tip of the blade must drep to zero. Along the
length of the blade the circulation may be assgned at will.
Having assigned the circulation along the blade, we deter-
mine the pressure variation, which is of decided importance
for the behavior of the boundary layer and its separation,
Since, at the present time, however, these questions are
not yet sufficiently cleared up, we shall be satisfied with
an estimate of the blade loading on the basis of a compari-
son with airfoils. In order to obtain approximately uni-
form loading of the blades, we have assumed the distribution
n d I'*/ar, shown in figure 6. The distribution of the
circulation itself is then given in figure 7. With the aid
of equation (9a) and the one obtained from it there were
than drawn the relative flow paths for the case of an in-
finite number of blades (fig. 8). TFor an assumption of 10
blades, there would thus be obtained as a rough approxima-
tion (computed as though for an infinite number of blades)
the blade passage shown in figure 8, The circulation
about each blade amounts to 0.0572 X 2 m r, X wr,. If

the 1ift coefficient of the blade is estimated on the basis
of airfoil investigations, we have

-

r wr by r
=4qm 2 —2rx-ygnp2l 2
t v t

2
[ed =

a 0.0572 (40)
V ¢
It is not clear which value for V must be substituted
since the formula is itself applicable only to a wing in
parallel flow., If we assume as a basis the mean value
between the relative inlet and outlet velocity, we obtain
C, = l1.57. If, however, the value at the flow-off edge
is considered as the determining velocity, there is ob-

*This equation can be written down immediately or obtained
from (38) with the aid of (35).




H.A.C.A, Technical Memorandum - No, 902 23

tained” c, ~ 1.9, The ec,° value is rather high but the
‘chdsefi"difiensions of the-wheel still may be considered as
suitable. . S R . el Ao

The radial and tangéntial additional velocities that
must be taken into account for a finite number of blades
were determined with the aid of equations (7a) and (8a) and
then from equation (10) the new improved blade shape S,
was computed (fig. 9). Since the shape S, deviated con-
siderably from the shape S5, there was determined a still
further improvement S, (fig. 9). This shape lies so
close to S that a further continuation of the iteration
was dispensed with.

The pressure distribution at the blade, a factor of
importance for the efficiency of the impeller insofar as
the nonaccounted-for effects of the boundary layer may be
Judged from it, can be determined with the aid of the
Bernoulli equation extended to rotational flows

P + % V:el = const + g wir? : (41)

: - L .2 ce
The constant is Ptoti 5 Cs + Py, 1if we denoﬁe the

static pressure at the entry to the wheel by p,. The

relative velocities at the pressure and suction sides of
the blade, which is assumed as very thin, differ at the
corresponding points by the amount of the vortex distri-
bution there, aI'/ds (vhere s, the arc length of the .
blade, is measured from the inlet edge). Denoting the
mean value of the relative velocities at the pressure and

suction sides by v, ; , Wwe obtain from equation (41)
. m N
for the pressure at the suction side Pgg
- 2_2 o 13l \?
Psg - Ptoti = -g' wr - 5 (Vrelm + '5' 5‘; _ (42)

and for that at the pressure side Py,
: e -

- - By - 2 ( EgLy
Par 7 Pyoty, ~ 2 ¢ Tom 2 \Vrely T 3 (43)

Figure 10 shows the pressure diétribution at the impeiler.
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Since, in general, impellers are designed with de-
creasing width in order to obtain as constant a mean ra-
dial velocity as possible, we shall also compute the ex~
ample for the same discharge quantity and pressure rise
for an impeller with decreasing width.

Let the width decrease linearly with the radius from
inlet to exit, so that the exit width hy = 0.1l m (fig.
11). From the continuity relation .

vx.a 2 T raha = vri 2 m rihy

there is then obtained for the mean radial exit velocity
vy = 0.84 x 25 = 21 m/s
a

First we compute the flow paths for the case of infinite
number of blades. The computation proceeds exactly as for
parallel bounding walls cxcept that the change in the mean
radial discharge veloclity as a result of the decreasing
width must be taken into account. We obtain the mean flow
path indicated in figure 12 by Sa‘ We now take account

of the finite number of blades by computing the harmonic
additional velocitics from equations (7a) and (8a) where
we may leave the decrecasing impeller width out of account.
By carrying along two terms of the serics, we obtain the
blade shape S, . To judge the suitability of the blade
shape, we det:rhine the load coefficient from equation (40).
We obtain the value 2.1 if we employ the exit velocity
as a basis for the approximation. The value has thus not
dropped in spite of the increcase in the mean discharge
velocity. This is due on the one hand to the smaller dack
flow of the blades and on the other hand to the shortening
of the chords.

In order to find the effect of the decreasing impeller-
width on the harmonic additional velocities according to
the discussion of section IV, we computed the additional
velocities for the case of equal total decrease of width
but with the latter varying hyperbolically (h = C r~8 =
0.085 r~ % 7%). The difference of the correction values

for v and vm in the harmonics was very small, as com~

pared with the linearly decrcasing width,where no account
was taken of the deccrcasing width in computing the harmon-
ics. Thus there was obtained for the integral value of the
first harmonic in the formula for the circumferential ve-
locity (equation (24) made nondimensional corresponding to




N.A.C.A. Technical Memorandum No. 902 25

(7a)) the value 0.0332 compared to 0.0337, the value that
was- obtained without taking account of the decreasing width
for the harmonic additional velocities.  Since the fourth
decimal. is not quite certain, the value 1is practically the
same. Similar relations were obtained for the radial ve-
locities. Since the effect of the decreasing impeller
width must be large for a small number of blades, we also
treated the problem for a wheel with 5 blades and one with
2. In the table below arc given the integral values of the
first harmonics of the circumferential velocity.

No. of | First cosine correction FPirst sine correction
blades Decreasing Constant Decreasing|Constant
width width width width
10 0.0332 00,0337 0.053 0.050
5 «1009 .1004 .119 110
2 +306 I .286 .164 «145

It may be seen that only for an impeller with 2
blades does any difference occur that is greater than the
computational accuracy. It may therefore be gsaid that it
is not necessary in the case of impellers the number of
whose blades is considerably larger than 2 to take account
of the variable width in the computation of the harmonic
additional velocities. This may also have been expected
from a consideration of equations (26) and (27).

VI. SUMMARY

For centrifugsl impellers with constant and with de-
creasing width, a procedure was developed which makes pos-
sible the computation of the unknown blade shape for a
prescribed circulation distribution over the circumference.
It was found that the decrease in the impeller width es-
sentially affects only the mean radial discharge velocity.
The procedure fills the gap between the two often consid-~
ered limiting cases, namely, that in which the impeller
is computed as though for an infinite number of blades
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(Buler equation} and that in which conformal transforma-
tion is applied; a procedure that is convenient only in
the case of a small number of blades. Since as yet only
- the case of impact-free entry has been treated, only the
theoretically best operating condition can be computed.
As soon as, for example, the discharge quantity varies
the entry angle no longer agrees and every blade is sub-
ject to the flow at the entry edge. The loss that is
thereby incurred may be estimated with the aid of the
methods of the airfoil theory. This will be discussed in
a succeeding paper.

Translation by S. Reiss,
National Advisory Committee
for Aeronautfics.
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Figure 1.~ Impeller with
variable width,

. bution on the circle of
radius R and corresponding tangential
and radial velocities Ve and vy, on
the circle of radius r.

Figure 4.~ Notations for impeller
with variable width.

Pigure 5.- Harmonic vortex distribution
on circle of radius R.
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Figure 6.,= Circulation distribu- Figure 7.- Circulation as a
tion in radial ’ function of the

direction, radius,
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Fifure 8.~ Blade shape for the assumption
' of infinitely many blades
'' (constant impeller width).
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Pigure 9.~ Taking account of
the finite number
of blades in the computation
of the blade shape, Sp initial
shape (see fig. 8), Sy and Sz
first and second improved

1.00 shapes respectively (constant
blade width).
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Pigure 10,~ Pressure distribution
at the blade So.
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Figure 12,- Blade shape for equal circulation distribution (fig. 6)
but decreasing impeller width, Sy shape according to

the theory for an infinite number of blades, S

account the finite number of blades,

a1 shape taking into
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